Heavy-quark collectivity Light-quark thermalization at RHIC #### Nu Xu #### **Many Thanks to** **HFT group - J. Thomas** X. Dong, H. Huang, *Yan Lu*, F. Retiere, H.G. Ritter, A. Rose, L. Ruan K. Schweda, *Aexandre Shabetai*, A. Tai, Z. Xu, *Yifei Zhang* M. Gyulassy, R. Rapp, R. Vogt, B. Zhang # Physics goals at RHIC Identify and study the properties of matter with partonic degrees of freedom. #### Penetrating probes - direct photons, leptons - "jets" and heavy flavor #### **Bulk probes** - spectra, v₁, v₂ ... - partonic collectivity - fluctuations Hydrodynamic Flow Collectivity Electivity Collectivity Electivity #### What we have learned at RHIC #### In Au + Au collisions: - (1) Partonic energy loss tense interactions amongst partons - (2) Partonic collectivities and de-confinement - (3) Hadron yields in the state of equilibrium # Electrons: a mixture c- & b- hadrons Partonic energy loss! Energy loss mechanism: under study M. Gyulassy et al. Problem: isolation Charm hadron contributions from Beauty-hadrons # v₂ at low p_T region - Minimum bias data! At low p_T , model result fits mass hierarchy well! - Details does not work, need more flow in the model! # φ-meson flows STAR Preliminary, QM05 conference S. Blyth et al. # Dynamic model results Models seem to work in $2.5 < p_T < 5 \text{ GeV/c}$ In those models, almost no interactions at the late hadronic stage. Flow developed prior to hadronization: - ⇒ partonic collectivity - ⇒ de-confinement See talks by: Bellweid, Blyth, Fachini, Gyulassy, Heinz, Hwa, Lu, Oldenburg, Sorensen, Zhang, Zhong #### Yields ratio results 200 GeV ¹⁹⁷Au + ¹⁹⁷Au central collision - In central collisions, thermal model fit well with γ_S = 1. The system is thermalized at RHIC. - Short-lived resonances show deviations. There is life after chemical freeze-out. RHIC white papers - 2005, Nucl. Phys. <u>A757</u>, STAR: p102; PHENIX: p184. #### What we have learned at RHIC #### In Au + Au collisions: - (1) Partonic energy loss tense interactions amongst partons - (2) Partonic collectivities and de-confinement - (3) Hadron yields in the state of equilibrium In order to demonstrate the possible early partonic thermalization, we need the heavy flavor collectivity measurement. This is an experimental issue. # Physics goals at RHIC Identify and study the properties of matter with partonic degrees of freedom. #### Penetrating probes - direct photons, leptons - "jets" and heavy flavor #### **Bulk probes** - spectra, v₁, v₂ ... - partonic collectivity - fluctuations Hydrodynamic Flow Collectivity Solution Local Thermalization # QCD Energy Scale | T _C
A _{QCD}
T _{CH} | GeV, similar to values critical temperature QCD scale parameter chemical freeze-out temperature scale for χ symmetry breaking | $\begin{split} m_c &\sim 1.2 - 1.5 \text{ GeV} >> \Lambda_{QCD} \\ &- \text{pQCD production - parton density at small-x} \\ &- \text{QCD interaction - medium properties} \\ &R_{cc} \sim 1/m_C \implies \text{color screening} \\ &J/\psi \implies \text{deconfinement and thermalization} \end{split}$ | |---|---|--| | u-, d-, s | s-quarks: <i>light-flavors</i> | c-, b-quarks: <i>heavy-flavors</i> | # quark mass - Higgs mass: electroweak symmetry breaking. (current quark mass) - QCD mass: Chiral symmetry breaking.(constituent quark mass) Strong interactions do not affect heavy-quark masses. # Charm cross sections First set of measurements, systematic errors are large. Precision data are needed: - energy loss analysis ⇒ test pQCD in hot and dense medium - J/ ψ analysis \Rightarrow test Charm thermalization and de-confinement # Non-photonic electron v₂ Charm flows - a hint for partonic thermalization at RHIC! Problem: Decay effect? #### Decayed electron p_T versus D- and B-hadron p_T The correlation between the decayed electrons and heavy-flavor hadrons is weak. Pythia calculation Xin Dong, USTC October 2005 # Challenges to electron spectra - 1) Decay kinematics and the correlations - 2) Separate Charm-hadron from Beauty-hadrons - 3) Possible collective 'flow' at the low p_T region - 4) Chemistry of heavy flavors # Direct Topological Identification of Charm-Hadrons in STAR # The Heavy Flavor Tracker - 1) A new detector: 30 µm silicon pixels to get excellent resolution at the vertex - 2) Direct topological reconstruction of Charm hadrons - 3) Analyze charm hadron Flow and Energy loss # The HFT Mechanical Design - Two Layers of Si - 1.5 cm radius - 5 cm radius - High Resolution - 100M pixels - $-30 \times 30 \mu m^2$ - Thin with low MCS - 50 μm thinned Si - 0.36% radiation length - 0.5 mm beam pipe - CMOS technology - 24 Ladders - 10 chips, 2 x 20 cm² - 100 mW/cm² power budget - air cooled # Open-charm hadron reconstructions - 1) D_s^0 , D_s^+ , Λ_c and their anti-particles can be reconstructed with the combination of the HFT+SSD*+TOF+TPC. - 2) Decent reconstruction efficiencies at low p_T region important for flow analysis. ^{*} Place holder for any adequate intermediate tracking device, such as IST. # Rates estimate - spectra #### (a) dN/dp_T distributions for D-mesons. The integrated yield dN/dy = 0.03 as measured in p + p collisions at 200 GeV ----Phys. Rev. Lett. 94, 062301 (2005) Scaled by $\langle N_{bin} \rangle = 950$, corresponds to the top 10% central Au + Au collisions at RHIC. - (b) 3-σ significance D⁰ efficiency with TPC+SSD+HFT. - (c) D⁰ rates from p+p and top 10% central Au + Au collisions at 200 GeV. | p _T (GeV/c) | Δp _T (GeV/c) | # of Events | # of Events | # of Events | |------------------------|-------------------------|-----------------------------|----------------------|----------------------| | | | $(\mathbf{p} + \mathbf{p})$ | 0-10% Au + Au | 0-80% Au + Au | | | | | $(N_{bin} = 950)$ | $(N_{bin} = 290)$ | | 1.0 | 0.5 | 44×10^{6} | 0.45×10^{6} | 1.75×10^{6} | | 2.0 | 0.5 | 70×10^{6} | 0.45×10^{6} | 1.75×10^{6} | | 3.5 | 1.0 | 70×10^{6} | 0.45×10^{6} | 1.75×10^{6} | | 5.5 | 1.0 | 350×10^{6} | 0.75×10^{6} | 3×10^{6} | | 7.5 | 1.0 | 1200×10^{6} | 3.5×10^{6} | 11×10^{6} | | 10.5 | 1.5 | 7500 × 10 ⁶ | 9 × 10 ⁶ | 30 × 10 ⁶ | # Rates estimate - v₂ (a) dN/dp_T distributions for D-mesons. Scaled by $\langle N_{bin} \rangle = 290$, corresponds to the minimum bias Au + Au collisions at RHIC. (b) Assumed v_2 distributions for D-mesons. ---- PLB 595, 202 (2004) Error bars shown are from 15% systematic errors - (c) 3-σ significance D⁰ efficiency with TPC+SSD+HFT. - (d) D⁰ meson v₂ rates from minimum bias Au + Au collisions at 200 GeV. The small and large error bars are for 15% and 30% systematic errors, respectively. For the v_2 analysis, 12 bins in ϕ are used. | p ₁ | $\mathbf{p}_{-}\left(\mathbf{C}_{0}\mathbf{V}/c\right)$ | Δp _T (GeV/c) | # of Events | # of Events | | |----------------|---|-------------------------|--------------------------|------------------------------|---| | | pr (Gev/c) | | q _c does flow | q _c does not flow | | | | 0.6 | 0.2 | 260×10^{6} | 525×10^{6} | | | - | 1.0 | 0.5 | 70×10^{6} | 140×10^6 | _ | | Ш | 1.0 | 0.5 | 70 10 | 140 / 10 | П | | | 2.0 | 0.5 | $53 \times 10^{\circ}$ | 125 ×10 ⁶ | | | L | 3.0 | 1.0 | 105×10^{6} | 175×10^{6} | | | | 5.0 | 1.0 | 210 × 10° | 440 × 10° | Γ | ### Vector meson reconstructions - 1) Enhanced background rejection power for vector meson reconstructions via di-leptons a factor of 15-20 - 2) Important to test Chiral symmetry restoration physics # Heavy flavor in Spin physics Heavy flavor production is gluon dominated, Spin sorting, gives direct access to gluon polarization. - 1) Heavy flavor mass sets a natural scale; need to separate charm and beauty -- displaced vertices measurement ⇒ HFT. - 2) HFT alone has a limited spin program at top RHIC luminosity \Rightarrow *IST*. from E. Sichtermann's talk # Summary #### **STAR** upgrades = future of RHIC! ## Test pQCD properties in hot and dense medium - Charm- and bottom-hadron spectra, R_{AA}, charm correlations - Sensitive and detailed study for partonic energy loss ⇒ `falsify pQCD, a la Miklos' - Precision Charm cross section for J/ ψ analysis direct test de-confinement and Charm thermalization ### (2) Test light-flavor thermalization - Charm-hadron v₂ partonic thermalization - Di-lepton invariant mass distributions χ_c symmetry # Summary #### **STAR** upgrades = future of RHIC! IST: Intermediate Si-Tracker - Important for p+p and peripheral ion collisions - Essential for spin physics - Tremendous enhancement for heavy ion program #### Others talks and links #### At this meeting: Yifei Zhang - Charm-hadron reconstructions Yan Lu - Background Howard Wieman - R&D Steve Steadman - Review Andrew Rose - HFT Software G. van Nieuwenhuizen - IST/FST E. Sichtermann - heavy flavor in Spin physics #### Other links: - http://www.star.bnl.gov/protected/future/ - http://www-rnc.lbl.gov/~nxu/group/starhft.html